
Consistency-aware and Predictable Memory
Processing for Safety-critical Out-of-order

Multicores
Zhuanhao Wu

University of Waterloo, Waterloo, Canada
zhuanhao.wu@uwaterloo.ca

Hiren Patel
University of Waterloo, Waterloo, Canada

hiren.patel@uwaterloo.ca

Abstract—We introduce an approach that facilitates pre-
dictable processing of multiple outstanding memory requests
in safety-critical out-of-order multicores. A primary challenge
addressed by this work is ensuring that multiple outstanding
memory requests maintain a memory consistent model while
minimizing a low worst-case latency. Adhering to a memory
consistency model is crucial for ensuring the correctness of
programs executed on such multicores. Our approach, termed
predictable processing of multiple outstanding requests (PPP),
leverages micro-architectural enhancements to tackle this chal-
lenge. Experimental results show that PPP delivers speedups of
2.07×, 2.79×, and 3.38× over serialization for 2, 4, and 8 cores,
while maintaining the worst-case latency.

I. INTRODUCTION

Multicore systems provide high performance while min-
imizing size, weight, and power in today’s safety-critical
embedded systems [1]–[3]. The implementation of multicore
systems for safety-critical embedded systems must strike a
balance between ensuring timing predictability—specifically,
the ability to establish worst-case execution time (WCET)
bounds for critical tasks—and delivering high performance
to satisfy the application’s quality-of-service requirements.
This is typically accomplished through meticulous design
of the multicore microarchitecture to accommodate a range
of performance-enhancing techniques while guaranteeing pre-
dictability. These include sophisticated in-order pipelines,
cache hierarchies, hardware-managed cache coherence [4]–[7],
main memory controllers [8], and interconnects [9], [10].
However, we observe that many of these multicores allow
each core to issue only one outstanding memory request to
the memory hierarchy [4]–[7]. We suspect it is to maintain
predictability and deliver worst-case latency (WCL) bounds on
memory requests. Unfortunately, this limitation presents three
significant drawbacks. (1) Non-blocking caches cannot be used
because multiple requests from a core cannot be issued. (2)
Out-of-order cores cannot exploit memory operations being
executed out-of-order because they are eventually completed
in-order. (3) The overall memory-level parallelism within the
memory hierarchy remains unexploited. These drawbacks limit
the implementation of several crucial techniques designed to
enhance the performance of multicore systems for safety-
critical embedded systems.

In this work, we overcome these drawbacks by build-
ing multicores that adopt out-of-order pipelines for cores,
a predictable cache coherence mechanism between cores’
caches, non-blocking caches for higher performance, and
timing predictability with a low WCL on memory accesses.
By timing predictability, we mean delivering a guaranteed
upper bound on WCL of memory accesses. To achieve
this, we enable cores to issue multiple outstanding memory
requests, allowing them to take full advantage of various
micro-architectural performance techniques. However, two key
challenges must be addressed. (1) We need to ensure that
multithreaded programs honour a memory consistency model,
which was not necessary when restricting each core to only
one outstanding request per core as done in state-of-the-art
related works. (2) We must design a technique that guar-
antees a WCL, and offers a lower WCL when compared
to employing existing techniques to ensure memory consis-
tency. We address these challenges in predictable processing
of multiple outstanding requests (PPP), which enables out-
of-order cores, non-blocking caches, and a hardware cache
coherence mechanism while preserving the total store order
(TSO) memory consistency model and timing predictability.
Our main contributions in this work are as follows.

1) We identify that introducing memory-level parallelism
naively leads to memory consistency model violations.

2) We examine approaches used in general-purpose systems
to ensure the memory consistency model and show that
those approaches result in a large WCL empirically.

3) We propose micro-architecture extensions, collectively
called PPP, that ensure both TSO and timing predictabil-
ity. The resulting multicores have out-of-order pipelines,
non-blocking caches, and predictable hardware cache co-
herence. PPP integrates hardware that monitors for poten-
tial memory consistency model violations. On detecting
a violation, PPP delays the request until the request does
not causes memory consistency model violations.

4) We provide a WCL analysis of memory accesses for PPP.
5) We implement PPP in the gem5 [11] simulator, and

compare PPP against two mechanisms that enforce TSO:
serialization of memory requests, and retry memory re-
quests.

Benefits of PPP. PPP offers three benefits over state-of-the-art
safety-critical multicores.

1) Performance. PPP directly addresses the performance
limitations in state-of-the-art safety-critical multicores
caused by only allowing a single outstanding memory
request per core in the memory hierarchy. PPP enables
multiple outstanding memory requests per core for safety-
critical multicores. Our results show that PPP achieves
a speedup of 2.07×, 2.79×, and 3.38× compared to
serialization for 2, 4, and 8 cores configurations, while
maintaining the analytical WCL bound. Moreover, PPP
offers comparable performance to general-purpose imple-
mentations with only a 5% performance loss.

2) Functional Correctness. PPP enforces sequential con-
sistency and total store order memory models. This
functional correctness requirement is non-negotiable even
in general-purpose multicores; failure in doing so, such as
integrating prior works naively [12], is a hardware bug.
This is because failing to honour a consistency model
results in unexpected outputs for multithreaded programs.

3) Low Worst-Case Latency. PPP delivers a lower worst-
case latency than its counterparts while offering perfor-
mance comparable to general-purpose approaches. We
observed the worst-case latency of retry and general-
purpose approaches are up to 6.0× and 5.4× of the
observed worst-case latency of PPP.

II. BACKGROUND

A. Predictable hardware cache coherence

Predictable hardware cache coherence is a state-of-the-art
data-sharing mechanism for safety-critical embedded system
multicores, allowing cores to privately cache data with a
consistent view of the data across all cores and offering
high performance [4], [7], [12], [13]. Predictable hardware
cache coherence ensures each memory request has a bounded
worst-case latency [4], [7], [12]. Predictable hardware cache
coherence operates at the granularity of cache lines, typically
32-byte or 64-byte. We refer to the cache line whose first byte
is at address A as: cache line A or simply A. An example
of predictable hardware cache coherence is the MSI-based
protocol, PMSI* [14]. PMSI* assigns each cache line a state:
Modified, Shared, or Invalid. A cache line in M state is
privately cached by only one core and this core can read from
or write to the cache line. A cache line in S state can be
privately cached by one or more cores. Finally, a cache line is
in I state if the core does not privately cache the cache line.

B. Memory consistency model

A memory consistency model describes the correctness of
shared memory accesses for multithreaded programs. Specif-
ically, the memory consistency model identifies the values
loads return when executing multithreaded programs, and
the eventual state of the memory. Consequently, a memory
consistency model defines the expected order of memory ac-
cesses seen by all cores. To help our exposition, we introduce
several definitions that formalize sequential consistency (SC)

�1 �2
(i1) [�] = 1 (i4) [�] = 1
(i2) �1 = [�] (i5) [�] = 1
(i3) �2 = [�] (i6) �3 = [�]
Forbidden in SC and TSO:
�1 = 1, �2 = 0, �3 = 0

�1 �2
(i1) [�] = 1 (i4) [�] = 1
(i2) �1 = [�] (i5) [�] = 1
(i3) �2 = [�] (i6) �3 = [�]
Forbidden in SC, allowed in TSO:

�1 = 1, �2 = 0, �3 = 0(a) (b)

Fig. 1: (a) The example shows results disallowed in SC and
TSO. (b) Forwarding value from (i1) to (i2) causes execution
result disallowed in SC.

and TSO memory consistency models. This formalization will
help readers understand the challenge in enforcing memory
consistency models in multicore systems, and allows us to
provide an understanding of correctness behind PPP. We will
use example programs in Figure 1 to aid the illustration.
Definitions and Terminology. We focus on memory opera-
tions of a multithreaded program when running on a set of
N cores C = {c1, c2, · · · , cN}. Hence, we denote the set of
load and store operations of a multithreaded program as L
and S, respectively. To represent initial values in memory, we
augment S with initial stores sa0 that populate the initial state
of the memory at the address a. Throughout this paper, we
assume the initial state in memory to be 0 for all addresses,
unless specified otherwise. For a memory operation o ∈ O,
S|o identifies the set of stores to the address targeted by o. We
start by describing the program order of a program executed
by a specific core c in Definition 1. The main intuition behind
this definition is that

p(c)−−→ is a total order on the operations
issued by core c, allowing us to determine which operation
comes before another in the program.

Definition 1 (Program order per core). The program order

of a program to be executed on core c, denoted as
p(c)−−→, is

defined as:

1)
p(c)−−→ is a total order, and

2) ∀o1, o2 ∈ O, (o1.core = o2.core = c) ∧ (o1 ̸= o2) =⇒
o1

p(c)−−→ o2 ∨ o2
p(c)−−→ o1. o1.core is the core issuing o1.

We use
p(o)−−→ for a memory operation o ∈ O to mean the

program order of the core that issued the memory operation.
We construct the program order by combining

p(c)−−→ from
individual cores, as defined in Definition 2. The program order
allows us to discuss memory operations from any cores.

Definition 2 (Program order). Two operations o1, o2 ∈ O are

in program order o1
p−→ o2 iff ∃c ∈ C, o1

p(c)−−→ o2.

Next, we introduce the notion of a memory order in Defini-
tion 3 and the closest store in Definition 4. The memory order
identifies the order of memory operations that are visible to
all cores. Notice that program order is a per-core total order,
and memory order is a total order over all operations from all
cores; thus, some interleaving of all the memory operations.

Definition 3 (Memory order). A memory order, m−→, is a total
order on memory operations O.

Consider the example in Figure 1(a), which shows a mul-
tithreaded program. Recall that all initial values in memory
are 0. Core c1 executes one store and two load operations:
(i1) writes the value 1 to memory address C, (i2) reads from
memory address A into register r1, and (i2) reads from B into
r2. Core c2 executes two stores and a load: (i4) and (i5) write
the value 1 to memory addresses B and A, respectively, and
(i6) reads C into register r3. Here, (i1)

p−→(i2)
p−→(i3) for c1 and

(i4)
p−→(i5)

p−→(i6) for c2 illustrate the program orders. For the
memory order, an execution where all operations of c1 execute
in program order followed by all operations of c2, also in pro-
gram order, results in (i1) m−→(i2) m−→(i3) m−→(i4) m−→(i5) m−→(i6).
This memory order returns the value 0 for r1, r2, and 1
for r3. Another execution may execute c2’s operations in
program order before c1’s resulting in the value 1 for r1,
r2 and 0 for r3. The memory order for the second possible
execution is (i4) m−→(i5) m−→(i6) m−→(i1) m−→(i2) m−→(i3). Both sets
of values for the registers are possible depending on how
memory operations are viewed by all cores. We compactly
represent the operations in program order, and memory order
using ⟨.⟩p and ⟨.⟩m. For example, ⟨i1, i2, i3⟩p is the program
order of operations for core c1, and ⟨i4, i5, i6, i1, i2, i3⟩m is
the memory order for the second possible execution.

A memory consistency model has a value function that
identifies the values returned when a core performs a load.
Therefore, the value function maps each load to the store that
it obtains its value from. Defining the value function requires
defining the closest store, which identifies the store that wrote
the value that a load reads from. We formalize the closest store
to a load operation in Definition 4. This definition takes a total
order t and the load l as inputs, and identifies the store from
which the load operation obtains its value. If such a store does
not exist, then the load takes on the initial value. When we
use a total order as a parameter or an argument, we refer to
it without the underlined arrow. Thus, we use t for the total
order t−→, p for

p−→, p(o) for
p(o)−−→, and m for m−→.

Definition 4 (Closest store). Given a total order t−→ on memory
operations, the closest store to a load operation l ∈ L is
defined as:

C(t, l) =

{
s, s ∈ S|l ∧ ∀s′ ∈ S|l, s′ ̸= s =⇒ ¬(s t−→ s′

t−→ l),

sl.addr0 , otherwise
(1)

Here, the closest store operation s to a load l is the store
where s

t−→ l, and there is no other store s′ to the same address
that occurs between s and l in the total order.

Using the closest store definition, we can define the value
functions. However, different memory consistency models
have different value functions based on the constraints imposed
by the particular memory consistency model. In Definition 5,
we show that for SC, the load returns the value from the most
recent store in the memory order.

Definition 5 (Value function for SC). Given a program order
p−→ , and a memory order on O of the program, m−→ , the value

function for the sequential consistency memory consistency
model is defined as:

VSC(p,m, l) = C(m, l)

For TSO, as described in Definition 6, a load gets its value
from the most recent store to the same address. However, this
store may be in the store buffer of the core that issued the
store; thus, its value would not have been propagated to the
memory hierarchy. This means that other cores would observe
the older value, but loads to the same address from the core
that issued the store would return the value written to by the
store. Such store is captured by C(p(l), l), which is the closest
store to l in the program order of the core issuing l. Note that
TSO enables the store buffer optimization, which is the reason
for the difference between SC and TSO.

Definition 6 (Value function for TSO). Given a program order
p−→ , and a memory order on O of the program, m−→ , its value

function is defined as follows:

VTSO(p,m, l) =

{
C(p(l), l), l

m−→ C(p(l), l)

C(m, l), otherwise
.

A multithreaded program can have multiple memory orders.
This is because cores see values in the memory via loads;
however, the order in which these loads occur can vary based
on their executions by their respective cores. Even so, two or
more memory orders can have loads return the same values
for all load operations. We determine these memory orders
to be equivalent. Definition 7 formalizes this insight as an
equivalence relation. This requirement complies with SC and
TSO, and complies with the architecture assumed in this work.

Definition 7 (Memory order equivalence). Given a memory
consistency model k ∈ {SC, TSO}, a program order

p−→, and
the value function, Vk, two memory orders m1−−→ and m2−−→ are
equivalent iff they return the same values for all loads, and the
orders of stores to the same address are the same. Formally,
m1 ≡k m2 iff

1) ∀l ∈ L, Vk(p,m1, l) = Vk(p,m2, l), and
2) ∀s1, s2 ∈ S, s1

m1−−→ s2 ⇐⇒ s1
m2−−→ s2.

We now define the meaning of a memory order honouring
a particular memory consistency model. Definition 8 shows
that a memory order is compliant with SC when operations
in program order also appear in the same program order in
the memory order. We also say the memory order is in SC to
denote that it is compliant with SC. There are four possible
program orderings of operations: Load followed by a Load
(load-to-load), Load followed by a Store (load-to-store), Store
followed by a Load (store-to-load), and Store followed by a
Store (store-to-store). A memory order is in SC when values
returned by the memory order are the same as an equivalent
memory order where all four program orderings are preserved.
Consequently, the interleaving of memory operations in the
memory order preserves the orderings of each individual core’s
program, and the values returned are the same.

Definition 8 (Compliance with SC). Given memory operations
O and a program order

p−→ , a memory order m−→ of O
complies with the SC iff

∃m′,m ≡SC m′,∀o1, o2 ∈ O, o1
p−→ o2 =⇒ o1

m′

−−→ o2.

Recall that TSO allows store buffer optimization, where
a load operation obtains the value written by a store from
the same core (to the same address) before the store’s value
is written to the memory hierarchy. Hence, unlike SC, TSO
does not require the store-to-load order to be preserved in the
memory order; instead, TSO ensures the orderings of load-to-
load, load-to-store, and store-to-store.

Definition 9 (Compliance with TSO). Given memory opera-
tions O = S ∪ L and a program order

p−→ , a memory order
m−→ of O complies with TSO iff

∃m′,m ≡TSO m′,

∀o1, o2 ∈ O, o1
p−→ o2 =⇒ o1

m′

−−→ o2 ∨ (o1 ∈ S ∧ o2 ∈ L).

In Definitions 8 (rsp. 9), the compliance with SC (rsp.
TSO) requires the existence of an equivalent memory order
m′ in which the loads are in program order. Hence, under
memory order equivalence, load-to-load ordering is preserved
in both SC and TSO. This specification allows us to study the
execution when an out-of-order core reorders loads for higher
performance; meanwhile, incorrect reordering of memory op-
erations violating memory consistency models, i.e. memory
orders producing non-consistent values, are excluded.
Example of TSO. Consider the example shown in Figure 1(b),
where the difference with the program in Figure 1(a) is that
(i2) in c1 loads from C instead of A. Recall that TSO relaxes
the ordering of store-to-load operations, and allows loads to
read values from the store buffer to dependent loads from the
same core. Let us assume that an execution of this example
results in a memory order of ⟨i6, i2, i3, i1, i4, i5⟩m and the
value for r1 is 1 and 0 for r2 and r3. This memory order is
TSO because all program orders except for store-to-load are
preserved with the following execution. Suppose that core c1
executes all its operations in program order, causing the store
of C, (i1), to be inserted in the store buffer. Since (i2) loads
C, it can read the value 1 from the store buffer. (i3) can then
proceed before the store to C has propagated to the memory
hierarchy. Similarly, core c2’s (i4) and (i5) are entered in the
store buffer for core c2. Then, (i6) can proceed before A, B
get propagated to the memory hierarchy. Hence, (i3) and (i6)
can proceed before the stores in the store buffers write their
values to the memory, causing the loads to return the value 0.
This memory order is TSO, but not SC. It is not SC because
(i2) is older (comes before) in the memory order than (i1).
Disallowed load reordering in TSO and SC. We wish to
allow reordering of loads in hardware, but only as long as
the reorderings comply with the memory consistency model.
When a pair of loads are reordered in a memory order, and
such reordering violates the memory consistency model, we
refer to this as a disallowed load reordering. To understand

���������� ���� ���� �������
��
��
	���
�
��

���������� ���
���������� �����������

����
����������
���������

...

c2 cNc1
��

Fetch
��

Decode
��

Rename

���

Issue/Execute/Writeback

���

In-order stage
Out-of-order stage

��
Commit

��� ��
����­ ����

����
����������
���������

����
����������
���������

������

��� ...

Reorder buffer

LSU: load store unit
LQ: load queue
SQ: store queue

Fig. 2: System model for PPP assumes that N out-of-order
cores and the LLC are interconnected with a split-bus.

how a violation occurs when such reordering happens, con-
sider again the example in Figure 1(a). We will explain how
the value of 1 for r1 and 0 for r2 will result in non-compliance
with TSO. The central observation is that (i2) and (i3), and
(i4) and (i5) must execute in program order because store-to-
store ordering is maintained in TSO. If (i2) returns the value
1, then (i5) must have written 1 to A. Also, since (i4) and
(i5) must execute in program order, (i4) will write 1 to B.
Thus, (i3) must return 1, but it does not. The contradiction is
evident since (i3) executing after (i2) reads B, which should
return the value 1. Note that this violation occurs irrespective
of the value taken by r3. One memory order leading to such
a result is ⟨i3, i6, i4, i5, i1, i2⟩m. Notice how (i2) and (i3) are
reordered, leading to (i3) reading 0 from B. Hence, r1 = 1
and r2 = 0 are not allowed in TSO. This execution result
triggers disallowed load reordering of (i2) and (i3) for TSO.
A similar argument can be made for SC.

C. Key takeaways

All state-of-the-art research on predictable hardware cache
coherence for safety-critical embedded systems allow only
one memory request per core. This disallows an architecture
that exploits memory-level parallelism. This work contends
that predictable hardware cache coherence can improve per-
formance by exploiting memory-level parallelism exposed by
out-of-order cores. However, the predictable hardware cache
coherence must be aware of the memory consistency model;
both in its implementation and the ensuing WCL analysis. Fur-
ther, the selection technique must aim to reduce the WCL. Our
work is a first step towards integrating out-of-order pipelines
with predictable hardware cache coherence while guaranteeing
both timing predictability requirements and performance.

III. SYSTEM MODEL

Our work considers a multicore system with N cores de-
noted as c1, c2, . . . , cN as shown in Figure 2(a). This multicore
system uses the state-of-the-art cache coherence designed for
safety-critical systems called PMSI* [6]. PMSI* uses a split-
transaction bus architecture as done with prior state-of-the-art
efforts [4], [6], [7], [12] to interconnect the multiple cores.
Core pipeline model. Figure 2(b) illustrates an out-of-order
core pipeline. The execution of an instruction begins by
fetching and decoding instructions in program order during
the fetch and decode stages. Decoded instructions are then
sent to the rename stage, where register renaming occurs.
If hardware resources such as arithmetic logic units, floating

point units, or the load-store unit for memory instructions are
unavailable, the pipeline stalls in the rename stage. The load-
store unit handles memory instructions through its load and
store queues. Load and store instructions are buffered in the
load queue and store queue in program order, respectively,
until they are ready to be sent to the cache. Renamed in-
structions enter the issue/execute/writeback stage, where out-
of-order execution occurs once dependencies are met. An
instruction entering issue/execute/writeback stage from rename
stage is also added to the reorder buffer, a first-in-first-out
queue that helps committing instructions in program order. For
arithmetic instructions, operands must be ready, while memory
instructions require address calculation and, for stores, the
data to be stored. The load-store unit calculates addresses
and handles cache requests for loads, while stores prepare
the address and data but delay sending to the cache. After
issue/execute/writeback, instructions wait in the reorder buffer
in the commit stage. The pipeline commits instructions in
program order. The core retires a store instruction by sending
it to the cache after the store instruction is committed and all
older store instructions in the SQ are retired. This means that
stores are processed in their program order.

Memory hierarchy – Caches, LLC, main memory. We
assume a memory hierarchy with L1 instruction and data
caches, a shared last-level cache (LLC), and a main memory.
Each core has a private L1 instruction and data cache. Both L1
caches are managed by an L1 cache controller, and the LLC is
managed by an LLC controller. The L1 cache controller also
manages the miss status holding register (MSHR) to allow non-
blocking accesses from the core. We use L1 cache and private
cache interchangeably. The LLC is exclusive to the L1; and
the LLC is banked to exploit memory-level parallelism. We
assume that access to main memory has a bounded WCL [15].

Split-transaction bus architecture. The cores and LLC com-
municate via a split-transaction bus, like prior works that
deliver high performance [4], [7], [12], [14]. The baseline
configuration of the split-transaction bus includes two buses:
(1) a request bus (REQ) allowing cores to send requests to the
LLC and to snoop other cores’ requests, and (2) a response
bus (RESP) transfering responses from LLC and cores. The
order of requests seen by all cores is governed by the REQ bus.
Therefore, the broadcast order of requests on REQ determines
the ordering of requests for the entire system. Note that when
a core transfers data over RESP, another core can snoop
the transferred data, enabling cache-to-cache transfers. PPP
includes a Broadcast Acknowledgement Bus (BACK) for the
cores to communicate with the arbiter to enforce the memory
consistency model.

Arbiter – Oldest-first global arbitration. The access to REQ,
RESP and the LLC follows the oldest-first global arbitration
scheme inspired by [12]. In this arbitration scheme, the arbiter
uses a work-conserving round-robin to pick the oldest request
from each core’s MSHR. The access to the LLC and RESP
follows the same ordering of requests as that on the REQ bus:
a work-conserving oldest-first global arbitration scheme.

⟨i3, i6, i4, i5, i1, i2⟩m

Speculative Load

Violating Store TSO allows i6 before i4, i5p p

TSO requires i4→i5 p
PPP allows i3 before i1, i2

p
p

⟨i3, i6, i4, i5, i1, i2⟩m

PPP delays i4 afteri2, while ensuring i4→i5p

⟨i3,i6,i1,i2,i4,i5⟩m

⟨i3,i6,i1,i2,i4,i5⟩m
≡TSO

⟨i1,i2,i3,i4,i5,i6⟩m≡SC

1
2

3 1
2
3

(a)

(b) (c)

Fig. 3: (a) Illustration of DLRC. (b) PPP postpones violating
store. (c) final memory order is equivalent to SC and TSO.
Memory operations are from Figure 1(a).

IV. KEY INTUITION: MEMORY CONSISTENCY MODEL
VIOLATION AND CORRECTION WITH PPP

Out-of-order pipelines execute loads out of program order
for higher performance. This is known as speculatively ex-
ecuting loads. Loads delay the execution of later dependent
instructions, causing the pipeline to stall. Instead, if other
loads can execute before earlier loads, then this improves
the pipeline’s utilization [13], [16], [17]. An important con-
sequence of enabling speculative load execution is that the
pipeline can benefit from using non-blocking caches [18]. A
non-blocking cache allows cores to proceed executing later
operations while earlier operations experience cache misses.
However, speculatively executing load operations can violate
the memory consistency model resulting in non-compliance
with the memory consistency model.
Speculative load execution causing memory consistency
model violation. We show that speculatively executing loads
can result in a memory consistency model violation. We revisit
the example in Figure 1(a), assuming the pipeline in Section III
with non-blocking caches. Suppose that B and C are the only
cache lines privately cached by c1 and c2, respectively. This
means that loads from c1 to B and from c2 to C will be cache
hits. Assume that (i1) and (i2) are stalled due to unmet depen-
dencies or resource constraints. For instance, (i1) can stall in
issue/execute/writeback stage because the address computation
for C may have earlier dependent operations, or stall in the
store buffer waiting to be drained. Similarly, (i2) can stall due
to a cache miss. However, by using a non-blocking cache, if
(i3)’s dependencies are met, then (i3) can speculatively execute
before (i1) and (i2). Since B is cached by c1, (i3) is a cache
hit and returns the value 0. We term a load such as (i3) that
executes out of program order a speculative load. Then, c1
executes (i1) and (i2) in order, after their dependencies and
resource constraints are resolved. For c2, let us assume that
(i4) and (i5) are stalled due to dependencies in computing the
addresses A and B, respectively. Since TSO allows store-to-
load to be executed out of program order, (i6) executes before
(i4) and (i5). As C is cached by c2, (i6) is a cache hit and
returns the value 0. Then, c2 retires (i4) and (i5) in order.
The resulting execution produces ⟨i3, i6, i4, i5, i1, i2⟩m. Note
that since (i2) comes after (i5) in memory order, r1 = 1; and
r2 = 0 due to the cache hit on the speculative load (i3). As
we explained earlier in section II, this memory order is not SC
nor TSO. This shows that speculatively executing loads out-of-

order can cause memory consistency model violations when
using SC and TSO. Hence, an implementation that promotes
speculative execution of loads must prevent such inconsistent
results from occurring, and ensure they are not propagated to
the architectural state.

Identifying disallowed load reordering conditions. We need
to identify conditions under which executing loads out of
order violate the memory consistency model. We notice that
there are three necessary conditions, as shown below, which
we call the disallowed load reordering conditions (DLRC).
These DLRC guide our design of PPP in the following way.
PPP ensures that DLRC never occur; therefore, preventing
any memory consistency model violations. In the subsequent
exposition, we assume memory operations O with its program
order

p−→ , and we also assume a memory order m−→ .
Additionally, we will focus on two load operations l1, l2 ∈ L
where they access different addresses: l1.addr ̸= l2.addr.

Definition 10 (DLRC). m−→ violates the memory consistency
model due to speculative load execution only if there exists
two loads l1 and l2, and these three conditions are met:

1) ⟨l1, l2⟩p ∧ ⟨l2, l1⟩m,
2) ∃s1, s2 ∈ S, ⟨l2, s1, s2, l1⟩m ∧ s1.core ̸= c∧ s2.core ̸= c,
3) s1 ∈ S|l2 ∧ s2 ∈ S|l1 ,

where core c refers to the core issuing l1 and l2.

We refer to conditions in DLRC as DLRC 1, DLRC 2,
and DLRC 3. DLRC 1 states two loads in program order are
reordered in the memory order due to speculatively executing
loads. DLRC 2 ensures there are at least two stores from other
cores between the reordered pair of loads in the memory order.
DLRC 3 requires that the store older in memory order writes
to the address of the speculative load l2, while the second store
writes to the address of the the other load l1. We show the
correctness of DLRC in Lemma 11 by contradiction. Our proof
assumes that stores are processed in order; this means that the
memory order of two stores from the same core complies with
their program order, as assumed in our system model.

Lemma 11 (DLRC correctness). A memory order m violates
the memory consistency model due to speculative loads only
if there exists two loads that satisfy the DLRC conditions.

Proof. We prove by contradiction. Suppose for all pairs of
loads, DLRC do not hold, then either DLRC 1, DLRC 2, or
DLRC 3 fails. If DLRC 1 fails, it means that all loads in
m follow their program order; hence, the memory order is
compliant with the consistency model. Otherwise, it suffices
to show that when DLRC 2 or DLRC 3 fails and DLRC 1
holds, we can construct a new memory order equivalent to
memory order m that is compliant with the consistency model.
We focus on two reordered loads l1 and l2 (i.e. ⟨l2, l1⟩m and
⟨l1, l2⟩p) where there are no same-core loads between l1 and
l2 in the memory order m. Such a pair of loads must exist as
follows. DLRC 1 implies that there exists a pair of reordered
loads lu and lv such that ⟨lu, lv⟩m and ⟨lv, lu⟩p. If there are
no same-core loads between lu and lv in m, we can pick

l1 = lu and l2 = lv . Otherwise, there exists another load lw
such that ⟨lu, lw, lv⟩m. If ⟨lv, lw⟩p, we can pick lw and lv ,
where there are less same-core loads between ⟨lw, lv⟩m than
between ⟨lu, lv⟩m; this applies equally when ⟨lw, lv⟩p where
we can pick lw and lv instead. Repeating this process yields
a pair of reordered loads l1 and l2 with no same-core loads in
between. Next, we use case analysis to examine the memory
operations between l1 and l2 in m, and show that we can
rearrange l1 and l2 in the memory order to get a new memory
order m′ that is compliant with the consistency model. The
new memory order m′ preserves the order in m for all memory
operations other than l1 and l2.

Case ▶ Intermediary operations to addresses other than
that of the loads. Suppose all operations between l2 and l1
access addresses that are different than l2’s and l1’s, hence
failing DLRC 2. These intermediary operations do not affect
the value returned by l2 and l1. Hence, l2 and l1 obtain
their values from stores older than l2 in the memory order.
Therefore, we can simply swap l1 and l2 to obtain m′ such
that ⟨l1, l2⟩m′ ; m and m′ are equivalent.

▶ Case ⟨l2, s1, l1⟩m. Since l2 reads the value before s1 writes
to it, the write performed by s1 does not change the value
returned by any of the loads. Note that l1 reads from a different
address than s1. Thus, the resulting values the loads return are
the same as the memory order where ⟨l1, l2, s1⟩m′ . The new
memory order m′ does not change the value function for both
SC and TSO because the relative ordering of store operations
are unchanged. Hence, m′ ≡TSO m and m′ ≡SC m.

▶ Case ⟨l2, s2, l1⟩m. If the intermediate operation is a store s2
that writes to l1’s address, the exact same reasoning applies.
The order m′ ≡TSO m and m′ ≡SC m where ⟨s2, l1, l2⟩m′ .

▶ Case ⟨l2, s2, s1, l1⟩m. Next, another possible memory order
is ⟨l2, s2, s1, l1⟩m. l2 loads a value from an older store than
s1 for TSO and SC, or the cloest store in program order for
TSO; and the same applies to l1, which loads a value from
s2 or the cloest store in program order for TSO. Hence, l1
and l2 still loads the same values in the equivalent memory
order ⟨s2, l1, l2, s1⟩m′ . The reason is that such movement does
not change the relative order of stores, and hence the values
returned by the loads remain.

▶ Case ⟨l2, s1, s2, l1⟩m. In this memory order, l2 loads a value
from an older store before s1, while l1 loads a value from
s2. Note that if this hold for m, it means all DLRC hold.
Intuitively, l2 must occur before s1 for l2 to return the value
before the write of s1; similarly, l1 must be after s2 for l1
to return the value of the write by s2. Therefore, there does
not exist an equivalent memory order where l1 and l2 are in
program order while returning the same values. This memory
order is not in SC and TSO.

The m′

−−→ , as constructed with the case analysis, preserves
all m′ order for operations other than l1 and l2, all load values,
and still fails DLRC 2 or DLRC 3. In addition, this m′

−−→ has
one fewer load reordering than m−→ . Note that altering the
positions of l1 and l2 does not change the values returned

by other loads. Hence, after repeating this process, we can
find an equivalent memory order with no reordered load by
repeatedly reducing the number of reordered loads to zero.
This contradicts the initial violation assumption, proving the
lemma by contradiction.

Our approach: Correcting DLRC in PPP. We allow load
reordering even if the memory consistency model disallows
it, but, when we recognize a potential violation, we correct it
at runtime. Our key insight is that multiple memory orders
conform to the memory consistency model, and if we are
able to produce one of those equivalent and conforming
memory orders, then the result also conforms. Previously,
in section II, we showed that ⟨i3, i6, i4, i5, i1, i2⟩m is not
TSO. This memory order reorders loads ((i3) before (i1)
and (i2)), and allows store-to-load reorders with (i6) before
(i4) and (i5). While the latter reordering is allowed under
TSO, the load reordering is not allowed. Suppose that we
are able to detect such a violating memory order before it
actually happens, and in response, we produce a corrected
memory order ⟨i3, i6, i1, i2, i4, i5⟩m instead. A key change in
the corrected memory order is that the stores to B and A ((i4)
and (i5)) occur after their loads ((i2) and (i3)). Hence, the loads
return values that are not updated by stores (i4) and (i5). The
corrected memory order is equivalent to ⟨i6, i1, i2, i3, i4, i5⟩m
where loads are in program order, and only the store-to-load
reordering is permitted; thus, complying with TSO.

PPP’s main technique is in providing corrected memory
orders when potential memory consistency model violations
are identified. We present the main high-level steps that PPP
uses to correct potential memory consistency model violations
that arise by speculatively executing loads.
Step 1: At runtime, PPP speculatively detects if a possible

memory consistency model violation may occur due to
load reordering. This detection is based on the DLRC
conditions. When the detection confirms a possible mem-
ory consistency model violation, there exists a store,
called the violating store, that changes the value being
returned by a speculative load.

Step 2: PPP checks if there are any loads prior to the spec-
ulative load in program order that have not yet returned
their values. If this check returns true, then PPP delays
the violating store until all loads older than and including
the speculative load are visible to all cores.

We revisit the memory order ⟨i3, i6, i4, i5, i1, i2⟩m that
violates TSO and show it in Figure 3. We mark the violating
store as the store to B (i4) and the speculative load as the
load to B (i3). (i3) is the speculative load because it appears
before both (i1) and (i2) in the memory order. When (i4) is
visible to all cores, each core executes step 1, and detects if
a memory consistency model violation may occur. Since (i4)
writes to the same address B and (i3) is a speculative load,
it is possible to have a memory consistency model violation.
Then, in step 2, the core with the speculative load discovers
if there are loads in program order before the speculative load
that have not returned their values. For this example, (i2) has

not returned its value. Thus, the violating store, (i4), is delayed
until both (i2) and (i3) are visible to all cores. A natural way
to visualize the effect of PPP’s delaying technique is shown
in Figure 3, where (i4) and (i5) move in the memory order
after (i2). This is the corrected memory order made visible to
all cores with PPP at runtime.

V. PPP: HARDWARE APPROACH TO CORRECT POTENTIAL
MEMORY CONSISTENCY MODEL VIOLATIONS WITH DLRC

We present details of the hardware for PPP to correct
potential memory consistency model violations due to spec-
ulatively executing loads. A key novelty of our technique is
that PPP maintains predictability when correcting potential
memory consistency model violations, unlike all prior efforts.
PPP introduces two key hardware innovations: (1) a broadcast
acknowledgement bus (BACK) to detect a violating store, and
(2) an orchestrator of operations over REQ, RESP, and BACK
to delay the violating store until all speculative loads are
completed. We describe the hardware that enables us to detect
and delay violating stores, and then with a concrete example,
we show how the hardware is used to correct potential
memory consistency model violations. Finally, we introduce a
technique that ensures the values returned to loads are correct
during the delay of the violating store.

A. Hardware implementation of DLRC correction

The DLRC conditions in Section IV determine when a
load reordering violates the memory consistency model. How-
ever, implementing these conditions directly in hardware is
impractical, as they require prior knowledge of the memory
order, necessitating visibility of all memory operations across
cores beforehand. By then, stores would have already up-
dated memory, and loads would have returned inconsistent
values, rendering the identification of violations moot. Thus,
we propose a runtime approach to detect potential memory
consistency violations without the complete memory order.
Detecting DLRC violations. We detect potential memory
consistency model violations due to load reordering with only
one violating store, outlined in HW-DLRC.

Definition 12 (HW-DLRC). Given two load memory opera-
tions l1, l2 from core c1, and a store operation s from an-
other core, the hardware disallowed load reordering violation
conditions (HW-DLRC) are as follows. (1) ⟨l1, l2⟩p and l2 is
inserted into memory order, but l1 is not. (2) ⟨l2, s⟩m and (3)
s ∈ S|l2 .

HW-DLRC 1 indicates l2 executes speculatively before l1.
HW-DLRC 2 states that store s executes after l2, and is
visible to all cores. HW-DLRC 3 means that s writes to the
same address as l2. These conditions are stronger than DLRC
conditions because it only uses one store to identify a poten-
tial memory consistency model violation. Hence, HW-DLRC
could identify a possible memory consistency model violation
when there is none. Nonetheless, this technique is essential for
a practical hardware implementation. The soundness of PPP
follows in the following lemma and theorem.

1 2 43 5

c1

c2

(i1) [C] = 1
(i2) r1 = [A]

(i3) r2 = [B]

(i4) [B] = 1

(i5) [A] = 1
(i6) r3 = [C]

L1
miss

L1
r2=0

REQ
Load A

LLC0
Load A RESP

Data A

L1
miss

REQ
Store B

LLC0
Store B

RESP
Data B

L1
[B]=1

REQ
Store A

LLC0
Store A

RESP
Data A

REQ
Store C

LLC1
Store C

RESP
Data C

L1
[C]=1

L1
[A]=1

L1
r1=0

L1
miss

L1
miss

time

* Table head in L1 Cache: Addr - address, St - State, V - Value ; Table head in MSHR: Req. - Request, DS - Dependent Stores

REQ: Store B
delay slot: 1

BACK:
c1: VStoreAckActivities on the

split-transaction bus REQ: UBLoad(1,A) BACK: idleActivities on the
split-transaction bus

L1
r3=0

(a)

Delay Store Table in arbiter
ID Request Count
1 Store B 1
… … …(c)

�1

CM (i1) [�] = 1
ROB
⟶ (i2) �1 = [�]

(i3) �2 = [�] = 0
L1 Cache MSHR

Addr St V Req. DS
A I - Load A 1
B S→I 0 Load B −
C I→M 1 … …

�2

CM (i3) [�] = 1
CM (i4) [�] = 1
ROB
⟶ (i5) �3 = [�]

L1 Cache MSHR
Addr St V Req. DS

A I − Store B 1
B I→M − … …
C S 0 … …

Delay Store Table
ID Req. Cnt.
1 B 1
… … …

�1

CM (i1) [�] = 1
ROB
⟶ (i2) �1 = [�]

(i3) �2 = [�] = 0
L1 Cache MSHR

Addr St V Req. DSTID
A I - Load A 1
B S→I 0 Load B −
C I→M − … …

�2

CM (i3) [�] = 1
CM (i4) [�] = 1
ROB
⟶ (i5) �3 = [�]

L1 Cache MSHR
Addr St V Req. DSTID

A I − Store B 1
B I→M − Store A −
C I − … …

Delay Store Table
ID Req. Cnt.
1 B 1→0
… … …

(d) (e)

(b)

HW-DLRC
check logic

PPP MSHR

��� HW-DLRC violation unblocking load index

DST ID

type addr PC DSTID Broadcasted Hit/Miss
Store C (i1) Invalid True Miss
Load* A (i2) 1 False Miss
Load B (i3) Invalid True Hit
*: load from (i2) is an unblocking load

Fig. 4: The working of PPP. (a) A concrete execution of the program in Figure 1(a). (b) MSHR is extended with the delay
store table index field (DST ID). (c) The delay store table in the arbiter split-transaction bus arbiter. (d) The operation of PPP
when an invalidating store broadcasts on REQ. (e) The operation of PPP when the invalidating store is no longer blocked.

Lemma 13. PPP ensures that three conditions DLRC will not
hold in a memory order.

Proof. Proof by contradiction. Suppose all DLRC hold in a
memory order, this means that there is a pair of load l1 and l2
and two stores s1, s2 such that DLRC 1, DLRC 2, and DLRC
3 hold. However, for DLRC 1 and DLRC 3 to hold, both HW-
DLRC 1 and HW-DLRC 2 must hold for l1, l2, and s2. As
such, the PPP mechanism engages and prevents s2 from being
broadcasted until l1 is broadcasted, preventing DLRC 2 and
DLRC 3 from holding, contradicting that DLRC hold.

Theorem 14 (soundness of PPP). When PPP is deployed, it
ensures no memory order violation.

Proof. Lemma 13 shows that DLRC do not hold with PPP.
With contraposition of Lemma 11, PPP ensures no memory
order violation.

B. Hardware implementation to delay violating stores

PPP requires three hardware components to support de-
laying violating stores, and returning correct values to loads
dependent on such stores. A violating store begins as a cache
miss, prompting the cache controller to broadcast a request
to fetch the accessed line on REQ. All cores see the REQ
broadcast, and all except the issuing core check for any
speculative loads reading from the same address. If such a
load exists, then the cache controller identifies if there are
other unbroadcasted loads that are older in program order
than the speculative load. When older loads exist, the store
is a violating store, and all cores and the arbiter coordinate
to delay the violating store. PPP needs hardware support
to implement this ability to delay stores and to enforce the
memory consistency model.

Delay store table (DST) and REQ bus. PPP implements an
N entry delay store table (DST) in the arbiter that records
information about stores identified as violating stores. One
entry corresponds to delaying one violating store. An entry
records an identifier (ID), the address targeted by the violating
store, and a Count of the number of cores that identified a
violating store to be delayed. There are N entries because
each core can delay at most one store at the same time. This is
because the core must wait until the violating store completes
before proceeding to the next memory operation. Figure 4(c)
shows an example of the DST. The DST shows a violating
store to address B with one core identifying it as a violating
store. When the arbiter grants access to a core to broadcast a
store on REQ, the arbiter checks the DST for a vacant entry.
The ID of the DST entry is broadcast together with the store.

MSHR modifications. Non-blocking caches use MSHR to
buffer memory requests that miss in the core’s private cache.
The MSHR records the type, address (addr), the broadcast
status of the operation, and instruction (instr) as shown in Fig-
ure 4(b). The type and address indicate the memory operation
type (load or store) and the targeted address. The instr field
denotes the instructions that bind to the memory operation.
The broadcast field is true when the request is placed on REQ.
This means all cores have seen this request. PPP extends the
MSHR with a field to represent DST ID. The DST ID field is a
list of identifiers from the arbiter’s DST of the violating stores
in the DST. Figure 4(b) shows an example of an MSHR with
three memory operations. Only the load to A has its DST ID
marked with a 1, and its broadcast to false. This 1 corresponds
to the ID 1 in the DST in Figure 4(c) for the store to B
signifying that the store to B may cause the speculative load to
A to return an inconsistent value for the memory consistency

Message Type Channel Explanation
Store (𝐴, 𝑠) REQ Store request has address 𝐴 and free delay table entry 𝑠

UBLoad (𝑠, 𝐴) REQ Unblocking load to address 𝐴 with delay table entry 𝑠
VStoreAck BACK Acknowledging that the store broadcast

on REQ is a violating store
LoadOV REQ The Load request that the LLC should

return the data value before the violating store

Fig. 5: PPP extends coherence messages to manage the delay-
ing of violating store and to ensure correct value forwarding.

model. We annotate this load as an unblocking load.
The HW-DLRC check logic component implements the

detection of a possible memory consistency model violation
(HW-DLRC conditions) and updating the DST ID entry in the
MSHR. Our implementation does the following. When the
check logic observes a store on REQ, it initiates the check
for HW-DLRC. The first step checks the MSHR for loads
that have the same address as the store broadcasted on REQ
(HW-DLRC 2 and 3). This is the load to B for (i3). Since
this load is in the MSHR, and it has been broadcasted, HW-
DLRC 2 is satisfied as the store broadcasted after the load.
Then, the check logic searches loads older than the load to
B in program order that have not been broadcasted. This
identifies speculative loads older than the load of B (HW-
DLRC 1), which we call the unblocking load. When there are
multiple speculative loads, the hardware selects the youngest
of these loads and marks it as an unblocking load. The load
to A is a speculative load as it has not been broadcasted.
The address matching process, done in parallel, is feasible
due to the MSHR’s small size; similar techniques are also
used in silicon-proven processors [19] for efficient store-to-
load forwarding within a single clock cycle.
New Coherence Messages. PPP introduces four new mes-
sages to coordinate the delaying of violating stores, as shown
in Figure 5. The use of these messages follows while detailing
required hardware structures.
Broadcast Acknowledgement Bus (BACK). PPP extends the
interconnect with a BACK bus that private cache controllers use
to communicate with the arbiter that a violating store should
be delayed. Cores use the VStoreAck message to inform the
arbiter that the most recent store is a violating store.
Cache controller modifications. Figure 5 lists the new coher-
ence messages used in PPP. When a core observes a violating
store, it sends VStoreAck over the BACK bus to the arbiter,
indicating that the store broadcast on REQ is a violating store;
hence, a DST entry should be allocated.

Recall that the load to A is the unblocking load. When an
unblocking load is ready to be broadcasted on REQ, the cache
controller sends an UBLoad message with the address and the
DST ID on REQ instead of a regular load request. UBLoad
notifies the arbiter to decrement the count field in the DST
entry of the violating store. When the count field reaches zero,
the violating store is no longer blocked and the arbiter allows
the store to proceed. Note that this means that the arbiter now
grants the access of the BANK and RESP to the store.

When a violating store is delayed, other cores can still issue

loads to access the cache line written by the violating store.
Note that since the violating store is delayed, and not yet
visible to all cores (not in the memory order), these loads
should appear to complete prior to the violating store. Hence,
the loads must return the value of the cache line before the
violating store writes to it. Since the violating store is a
private cache miss, the value before the violating store is in
the main memory or is cached in the LLC; the value written
by the violating store is in the store buffer of the core that
issues the store. When TSO is deployed, younger loads can
return the value before the violating store with store-to-load
forwarding. PPP ensures that such loads receive the old value
by introducing a new request message named LoadOV (load
old value). When a load is issued on REQ, and the cache line is
accessed by a delayed violating store, instead of broadcasting
an ordinary load on REQ, the arbiter intercepts the load request
and broadcasts a LoadOV request instead.

C. Concrete execution

We re-examine the high-level example presented in Fig-
ure 3. Initially, B is cached in c1, and C is cached in c2. Other
cache lines are not privately cached by any cores. Since c1 and
c2 executes loads speculatively, (i3) and (i6) are sent to the
cache out of program order. Both loads hit in the cache. This
concludes the execution during 1 . Next, c1 sends (i1) and (i2)
to the cache, while c2 sends (i4) to the cache. PPP requires
that younger stores must be sent after all older stores are
visible to all cores, c2 hence stalls on (i5) until (i4) broadcasts.
Commercial processors implementing TSO also sends younger
stores after all older stores are visible to all cores [20]. (i1),
(i2), and (i4) miss in the cache.

Next, during 2 , the arbiter grants access to c2 and broad-
casts (i4) on REQ. When c1 receives (i4) on REQ, it observes
that (i3) is a speculative load hit; in addition, (i3) is not yet
broadcasted on REQ. This leads c1 to send a VStoreAck on
BACK, indicating that (i4) is a violating store. Recognizing
this fact, the arbiter allocates a DST entry with ID 1 for (i4).
Additionally, c1’s MSHR entry corresponding to (i2) records
that the DST entry ID of the invalidating store is 1; this
marks (i2) as an unblocking load. This indicates that when
(i2) broadcasts, a UBLoad is sent instead of an ordinary load.
This is shown in Figure 4(d). At the end of 2 , since (i4) is
broadcasted, c2 can now issue (i5) to the cache, which misses.

During 3 , the arbiter grants access to c1 due to round-
robin arbitration; c1’s (i1) is c1’s oldest request, and c1
broadcasts (i1) on REQ. Although C is cached in c2, and
(i6) is a speculative load, there is no older load in c2 that is
not broadcasted; hence, (i1) is not a violating store and can
proceed. If the retry mechanism was used, (i6) must be retried
because C is invalidated by (i1).

Next at 4 , the round-robin arbiter on REQ should grant
access to c2. However, since (i4) is a violating store, c1’s
younger memory operations are delayed, until (i2), the un-
blocking load, broadcasts. Hence, PPP’s arbiter grants access
to REQ again to c1, whose oldest unbroadcast request is now
(i2). When (i2) broadcasts on REQ the arbiter recognizes that

REQ LLC RESP
Lreq treq tmem tresp

Lwait

Lacc

Fig. 6: Timeline of a request.

it is an unblocking load for delay slot 1 because its delay
slots field is not empty. Hence the arbiter reduces the count
field for DST entry from 1 to 0. Since now the count field for
delay slot 1 becomes 0, the arbiter clears the delay slot and
allows (i3) to proceed in 5 . Without PPP, the arbiter grants
access to c2 and allows (i5) to proceed before (i2), causing r1
to load 1, exhibiting DLRC.

VI. WORST-CASE LATENCY ANALYSIS

Our worst-case latency analysis computes the latency from
when a request becomes the oldest among the inflight requests
to when this oldest request receives its response from the
memory hierarchy. As such, the worst-case latency of multiple
requests can be upper-bounded by the sum of the worst-case
latency of individual requests [12].

Our analysis divides the worst-case latency of a request
into three parts, which naturally follows the life cycle of a
request. Figure 6 shows the life cycle of a request that begins
with a miss in the private cache and needs to retrieve the
data from the LLC. Before this request can be broadcasted
over REQ, it suffers Lreq in the worst case. This is because
the round-robin arbitration controls the access to REQ. Next,
before the request can access the LLC, and before the request
can access RESP, it can be delayed. This is because requests
from other cores can be broadcast on REQ before the request
under analysis. These older requests access BANK and RESP
before the request under analysis. The total latency the request
must wait to access the LLC and RESP in the worst-case is
bounded by the worst-case resource latency Lwait. Accessing
the LLC takes tmem in the worst case while accessing RESP
takes tresp in the worst case. This means that tmem bounds
the worst-case latency of accessing the LLC and fetching data
from the main memory. The total latency of accessing the
resources in the worst case is Lacc = treq + tmem + tresp.

We identify the critical instance where the request under
analysis, rua, suffers the worst-case latency. We start with the
worst-case request latency, which is the worst-case latency it
takes for rua to be broadcasted on the bus.

Lemma 15. In the worst case, rua experiences the worst-case
request latency when it is ready to be broadcasted on REQ
and it is the last among all N cores to broadcast requests.
The worst-case request latency is Lreq = (N − 1)treq.

Proof. In the worst-case, when rua from cua is ready to be
broadcast on REQ, it is the last in the round-robin order to
broadcast; hence it must wait until its turn. Also note that
there are (N − 1) cores in the worst-case that must broadcast
their requests before cua can broadcast rua, where each such
broadcast costs treq.

A request r delays rua’s access to the LLC or RESP if after
rua broadcasts on REQ, rua must wait for r’s access to any
of the resources to complete (REQ, the LLC, or RESP) before
rua can access the resource.

Lemma 16. A request r delays rua’s access to the LLC or
RESP if and only if: r is in the MSHR of a core other than cua,
and any of the following conditions is true: (1) r broadcasts
before rua on REQ, and, (2) r is a load request that is older
than a speculative load to cache line A.

Proof. We first prove the if part: If a request completes when
rua broadcasts, since this request will not access the LLC or
RESP; hence if a request delays rua, it must be inflight when
rua broadcasts on REQ, that is, in the MSHR. Because the
arbiter maintains the broadcast order of requests, any requests
that broadcast before rua must access the LLC or RESP before
rua, hence a request satisfying (1) would be processed before
rua. Finally, PPP ensures that when rua invalidates A and
there is a speculative load that hits on A, rua must complete
after all prior requests of the speculative load, hence (2). The
only if part follows from the implementation of the arbiter.
Condition (1) follows when rua is not in the delay slot, the
arbiter prioritizes the access to the LLC and RESP for requests
that are broadcast before rua. When rua is in the delay slot,
it must wait until all unblocking load to broadcast on REQ,
which incurs condition (2).

The worst-case resource latency captures the latency that
rua must wait before accessing LLC and RESP.

Lemma 17. The worst-case resource latency Lwait due to
waiting for accessing the LLC and RESP is Lwait = (N −
1)×M × (tmem + tresp) + (M − 1)× (N − 1)× treq.

Proof. We can count the number of requests that delay rua
using Lemma 16. In the worst case, the requests that satisfy
condition (1) in Lemma 16 is (N − 1)×M . Note that M is
the maximal number of outstanding requests. This is because
each of the other N − 1 cores can broadcast at most M
inflight requests when rua broadcasts its request on REQ.
These requests can delay rua by at most (tmem + tresp).
In the worst case, the requests that satisfy condition (2) are
(M − 1)(N − 1). This is because all requests from all other
N−1 cores can have at most (M−1) requests (excluding the
speculative load) that must finish before rua. Note that in the
worst case, all these requests are not broadcast. Hence, these
requests can delay rua by at most treq .

Theorem 18. The worst-case latency of a request under
analysis rua is WCL = Lreq + Lwait + Lacc, where Lacc =
treq + tresp + tmem is the latency for REQ, RESP, and the
LLC to process the request.

Theorem 18 follows Lemma 15 and Lemma 17.

VII. EMPIRICAL EVALUATION

We evaluate our proposed approach using the gem5 [11]
micro-architectural simulator. We simulate configurations with

barnes

fm
m

cp_ocean

raytrace

w
ater-sp

cholesky

fft cb_lu

ncb_lu

radix

0

1

2

GP DP-Retry Serial PPP

Benchmark (PPP WCL=26460 cycles)

O
b
s
.

W
C

L
 (

×
1

0
⁴
 c

y
c
le

s
)

barnes

fm
m

cp_ocean

raytrace

w
ater-sp

cholesky

fft cb_lu

ncb_lu

radix

0

1

2

3

GP DP-Retry Serial PPP

Benchmark (PPP WCL=61020 cycles)

O
b
s
.

W
C

L
 (

×
1

0
⁴
 C

y
c
le

s
)

barnes

fm
m
cp_ocean

raytrace

w
ater-sp

cholesky

fft cb_lu

ncb_lu

radix

G
M
ean

0

0.5

1

GP DP-Retry Serial PPP

Benchmark

S
p
e
e
d
u
p

barnes

fm
m
cp_ocean

raytrace

w
ater-sp

cholesky

fft cb_lu

ncb_lu

radix

G
M
ean

0

0.5

1

GP DP-Retry Serial PPP

Benchmark
S
p
e
e
d
u
p

barnes

fm
m
cp_ocean

raytrace

w
ater-sp

cholesky

fft cb_lu

ncb_lu

radix

G
M
ean

0

0.5

1

GP DP-Retry Serial PPP

Benchmark

S
p
e
e
d
u
p

barnes

fm
m

cp_ocean

raytrace

w
ater-sp

cholesky

fft cb_lu

ncb_lu

radix

0

0.5

1

GP DP-Retry Serial PPP

Benchmark (PPP WCL=9180 cycles)

O
b
s
.

W
C

L
 (

×
1

0
⁴
 c

y
c
le

s
)

2 cores 4 cores 8 cores

(a) (b) (c)

(d) (e) (f)

Fig. 7: Observed worst-case latencies of Serial, DUEPCO, GP, and PPP for 2, 4, and 8 cores are shown in (a), (b), and (c)
respectively. Performance of 2, 4, and 8 cores configurations are shown in (d), (e), and (f) respectively. Baseline configuration
is GP. The GMean indicates geometric mean.

2 4 8
0

1

2

3

4

GP DP-Retry Serial PPP

Number of cores

O
b
s
e
r
v
e
d
 W

C
L
 (

×
1

0
⁴
 c

y
c
le

s
)

4860

13500

30780

synth 1 synth 2

barnes

fm
m
cp_ocean

raytrace

w
ater-sp

cholesky

fft cb_lu

ncb_lu

radix

G
M
ean

0

0.5

1

GP FCFS-PPP DP-Retry PPP

Benchmark

S
p
e
e
d
u
p

2 4 8
0

0.2

0.4

0.6

0.8

1

GP DP-Retry Serial PPP

Number of core

S
p
e
e
d
u
p

(a) (b) (c)

Fig. 8: (a) Observed WCL of 2 to 8 cores configurations with synthetic benchmarks. The dashed lines tag the WCL of PPP.
(b) Speedups of 8-core PPP, FCFS-PPP, and DP-Retry normalized to GP. (c)Running SPLASH-3 benchmarks on 2, 4, and 8
cores configurations with single-threaded execution. Speedups are normalized to GP.

various number of cores. Each core implements an out-of-
order pipeline with an issue width of 8 operating at 2Ghz,
and all L1 caches are non-blocking.

We implement five configurations: (1) the Serial configura-
tion that serializes all memory requests, (2) GP that reflects
the general-purpose approach of handling memory requests
for high performance, where retry mechanism ensures consis-
tency and a first-come-first-serve arbiter arbitrates the memory
requests on the split-bus, (3) the prior work on predictable
cache coherence that supports multiple outstanding requests,
DUEPCO, where no special mechanism ensures memory con-
sistency, (4) DP-Retry that deploys the retry mechanism in
DUEPCO to ensure memory consistency model, and (5) our
proposed approach, PPP. Since each core in Serial has only
one request, the L1 functions as a blocking cache. Note that
this design reflects the handling of memory requests in state-
of-the-art out-of-order pipelines [21]. We assume that each
core is equipped with 16kB L1 private instruction and data
caches. The private caches are backed by a shared 2MB LLC.
The private caches and the shared LLC communicate through
split buses as presented in the system model. We assume that
treq = 20 cycles, tresp = 10 cycles, and tmem = 500 cycles.

A. Verification of correctness

We exercise our implementation with manually crafted
litmus test [22] memory access traces and do not observe TSO
or SC violation in our implementation. We further observe that
DUEPCO violates SC and TSO, when exercised with the mp
and iriw litmus tests [22]; hence we do not include DUEPCO
for further evaluation on performance and predictability.

B. Worst-case latency

Synthetic benchmarks. Our synthetic benchmarks attempt to
stress the different configurations. In all configurations except
for Serial, we use an MSHR of size 8 (M = 8), for efficient
creation of the worst-case scenario. Serial has an MSHR of
size 1 (M = 1) to reflect the blocking nature of the cache.
The benchmark synth 1 exercises the WCL of the system by
generating memory accesses to the same cache lines. Note
that synth 1 does not exercise the retry mechanism. synth 2
exercises the memory consistency enforcement mechanism by
timing the requests such that store requests write to cache lines
read by speculative loads, causing the retry mechanism to be
invoked in both DP-Retry and GP. This triggers both the retry
mechanism in DP-Retry and the delay mechanism in PPP.

The results are shown in Figure 8(a), where dashed lines
and numbers above indicate the WCL of PPP. We observe
in synth 1 that all predictable configurations, including DP-
Retry have a WCL that is within the analytical WCL bound.
Specifically for PPP, the observed WCL are 2080, 5720, and
18720 cycles for 2, 4, and 8 cores configurations, respectively.
In synth 2, PPP has a WCL of 3120, 3640, 7163 cycles
for 2, 4, and 8 cores, respectively, which are lower than the
corresponding analytical WCL bound of PPP of 4860, 13500,
and 30780 cycles. We observe that both DP-Retry and GP
have a WCL that is higher than the analytical WCL bound
of PPP. For example, for 8 core configuration, DP-Retry and
GP has a WCL of 43160 cycles and 39000 cycles respectively,
higher than PPP’s WCL. In addition, we observe that the total
execution time of synth 2 of DP-Retry and GP is higher than
PPP; this is an indication that PPP has a better performance
than DP-Retry and GP when the retry mechanism is exercised.
Serial shows the lowest WCLs of 4240, 8480, and 16960
cycles compared to PPP and Retry. Despite its low WCL, we
will present in following sections Serial’s subpar performance
compared to GP and PPP.
Splash-3. We also evaluate the observed WCL with the
SPLASH-3 [23] benchmarks. SPLASH-3 consists of a wide
variety of complex parallel multi-threaded applications that
exercise data sharing and synchronization across cores. We
use SPLASH-3 to study the impact of these inter-core in-
teractions on performance and WCL when a system deploys
PPP. Figure 7(a)-(c) show the results for 2, 4, and 8 cores
configurations. Our results show that the observed WCLs of
PPP are within the analytical WCL.

C. Performance

We evaluate the performance of PPP using SPLASH-3 [23].
Figure 7(d)-(f) show the results when running SPLASH-3
benchmarks on 2, 4, and 8 cores configurations. In Figure 7(d)-
(f), we report the speedup metric, which is the ratio of
the execution time of the baseline configuration, GP, to the
execution time of the configuration under evaluation. When
compared to the GP mechanism, Serial exhibits slowdown of
2.17×, 2.94×, and 3.45×, for 2, 4, and 8 cores respectively.
Hence, enforcing TSO by serializing memory requests incurs
a significant performance penalty. On the other hand, PPP has
similar performance as GP, where the speedup of PPP over GP
is 0.95×, 0.95×, and 0.98× for 2, 4, and 8 cores respectively.
Thus, PPP offers similar performance to a general-purpose
scheme to ensure memory consistency while guaranteeing
predictability. This is a positive result of this work. We also
notice that DP-Retry has a marginally better performance
than PPP. It exhibits a speedup of 0.99× for 2, 4, and 8
cores when compared to GP, such performance comes at
the cost of a higher WCL as shown in the previous section.
This performance gap is a result of the first-come-first-serve
(FCFS) arbiter deployed in DP-Retry. To validate this, we
integrate PPP with the FCFS arbiter (denoted FCFS-PPP),
and evaluate the performance. Figure 8(b) shows that in an
8-core configuration when PPP is integrated with the FCFS

arbiter, PPP achieves a speedup of 0.99× over GP. We plan
to investigate the impact of integrating PPP with the FCFS
arbiter in future work.

Finally, we evaluate PPP’s performance with SPLASH-3
benchmarks when no inter-core interference is present, by
running the benchmarks using a single thread for 2, 4, and 8
cores configurations. Figure 8(c) shows that PPP has less than
1% performance difference for 2, 4, and 8 cores configurations,
respectively, when compared to GP. The close performance
between PPP and other mechanisms such as DP-Retry and
GP is because in PPP, the delay mechanism is not triggered
when there is no inter-core interference. Note that Serial has a
slowdown of up to 1.4× compared to GP due to its blocking
nature when handling memory requests.

D. Discussion

This work reveals that PPP guarantees the worst-case la-
tency and maintains SC and TSO while foregoing marginal
performance. Unlike DUEPCO, which supports multiple out-
standing requests for safety-critical systems but risks pro-
ducing logically incorrect results for memory accesses, PPP
ensures both timing predictability and logical correctness.
Furthermore, PPP delivers performance comparable to GP
and DP-Retry in typical execution scenarios, such as those
illustrated in Figure 7(d)-(f). PPP offers a distinct advantage
over others by possessing a worst-case latency bound that is
known and lower than the observed worst-case latencies of
GP and DP-Retry. We envision PPP’s WCL bound could be
incorporated into static analyses [21], [24], [25] to provide safe
worst-case execution time estimates. Further, PPP’s perfor-
mance benefit improves the quality of service of applications,
and it encourages the deployment of performance demanding
applications in safety-critical systems. Also, for systems such
as mixed criticality, the slack provided by the performance
benefits can be used for other noncritical tasks [26], [27].
As core count increases, PPP’s analytical WCL bounds ex-
ceed those of Serial due to increased contention for shared
resources. This is an inherent consequence of the parallelism
exploited by PPP and does not represent a limitation of the
approach; rather, PPP’s WCL remains a safe upper bound.

VIII. CONCLUSION

We present PPP, a set of micro-architectural augmentations
to enable the use of non-blocking caches, and cache coherence
for out-of-order pipelines in safety-critical embedded systems.
PPP allows multiple outstanding requests, exposed by both
the out-of-order pipeline and the non-blocking caches, for
significant performance gains over state-of-the-art techniques
that serialize memory accesses by 2.07×, 2.79×, and 3.38×
for 2, 4, and 8 cores. To the best of our knowledge, this is the
first work to provide WCL guarantees for memory accesses
in safety-critical embedded systems that allow for multiple
outstanding requests, while enforcing the memory consistency
model.

REFERENCES

[1] R. Pujol, H. Tabani, J. Abella, M. Hassan, and F. J.
Cazorla, “Empirical evidence for mpsocs in critical
systems: The case of nxp’s t2080 cache coherence,” in
2021 Design, Automation & Test in Europe Conference
& Exhibition (DATE), 2021, pp. 1162–1165.

[2] B. D. de Dinechin, “Invited consolidating high-integrity,
high-performance, and cyber-security functions on a
manycore,” in 2019 56th ACM/IEEE Design Automation
Conference (DAC), 2019, pp. 1–4.

[3] Renesas, R-Car-V4H - Best-in-Class Deep Learning at
Very Low Power, System-on-Chip for Automated Driving
Level 2+/Level 3, 2024.

[4] A. M. Kaushik, M. Hassan, and H. Patel, “Designing
predictable cache coherence protocols for multi-core
real-time systems,” IEEE Transactions on Computers,
vol. 70, no. 12, pp. 2098–2111, 2021.

[5] A. M. Kaushik, P. Tegegn, Z. Wu, and H. Patel,
“Carp: A data communication mechanism for multi-
core mixed-criticality systems,” in 2019 IEEE Real-
Time Systems Symposium (RTSS), 2019, pp. 419–432.

[6] A. M. Kaushik and H. Patel, “A systematic ap-
proach to achieving tight worst-case latency and high-
performance under predictable cache coherence,” in
2021 IEEE 27th Real-Time and Embedded Technology
and Applications Symposium (RTAS), 2021, pp. 105–
117.

[7] S. Hessien and M. Hassan, “Piscot: A pipelined split-
transaction cots-coherent bus for multi-core real-time
systems,” ACM Trans. Embed. Comput. Syst., Jul. 2022,
Just Accepted.

[8] D. Guo, M. Hassan, R. Pellizzoni, and H. Patel, “A
comparative study of predictable dram controllers,”
ACM Trans. Embed. Comput. Syst., vol. 17, no. 2, Feb.
2018.

[9] S. Wasly, R. Pellizzoni, and N. Kapre, “Hoplitert:
An efficient fpga noc for real-time applications,” in
2017 International Conference on Field Programmable
Technology (ICFPT), 2017, pp. 64–71.

[10] T. Garg, S. Wasly, R. Pellizzoni, and N. Kapre, “Ho-
plitebuf: Network calculus-based design of fpga nocs
with provably stall-free fifos,” ACM Trans. Reconfig-
urable Technol. Syst., vol. 13, no. 2, Feb. 2020.

[11] N. Binkert, B. Beckmann, G. Black, et al., “The gem5
simulator,” SIGARCH Comput. Archit. News, vol. 39,
no. 2, pp. 1–7, Aug. 2011.

[12] R. Mirosanlou, M. Hassan, and R. Pellizzoni,
“Parallelism-Aware High-Performance Cache Coher-
ence with Tight Latency Bounds,” in 34th Euromicro
Conference on Real-Time Systems (ECRTS 2022), M.
Maggio, Ed., ser. Leibniz International Proceedings
in Informatics (LIPIcs), vol. 231, Dagstuhl, Germany:
Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2022, 16:1–16:27.

[13] J. L. Hennessy and D. A. Patterson, Computer Archi-
tecture, Sixth Edition: A Quantitative Approach, 6th.
San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 2017.

[14] V. Nagarajan, D. J. Sorin, M. D. Hill, and D. A. Wood,
“A primer on memory consistency and cache coher-
ence, second edition,” Synthesis Lectures on Computer
Architecture, vol. 15, no. 1, pp. 1–294, Feb. 2020.

[15] Z. P. Wu, Y. Krish, and R. Pellizzoni, “Worst case
analysis of dram latency in multi-requestor systems,” in
2013 IEEE 34th Real-Time Systems Symposium, 2013,
pp. 372–383.

[16] J. Zhao, B. Korpan, A. Gonzalez, and K. Asanovic,
“Sonicboom: The 3rd generation berkeley out-of-order
machine,” in Fourth Workshop on Computer Architec-
ture Research with RISC-V, vol. 5, 2020.

[17] K. Gharachorloo, A. Gupta, and J. Hennessy, “Two
techniques to enhance the performance of memory
consistency models,” in ICPP’91, 1991.

[18] D. Kroft, “Lockup-free instruction fetch/prefetch cache
organization,” in Proceedings of the 8th Annual Sympo-
sium on Computer Architecture, ser. ISCA ’81, Min-
neapolis, Minnesota, USA: IEEE Computer Society
Press, 1981, pp. 81–87.

[19] I. Parulkar, A. Wood, J. C. Hoe, et al., “Opensparc: An
open platform for hardware reliability experimentation,”
in Fourth Workshop on Silicon Errors in Logic-System
Effects (SELSE), Citeseer, 2008, pp. 1–6.

[20] J.-M. Frailong, P. Sindhu, M. Cekleov, M. Powell, and
E. Jensen, Method and apparatus for providing total
and partial store ordering for a memory in multi-
processor system, US Patent 5,265,233, Nov. 1993.

[21] A. Gruin, T. Carle, C. Rochange, H. Casse, and P.
Sainrat, “Minotaur: A timing predictable risc-v core
featuring speculative execution,” IEEE Transactions on
Computers, vol. 72, no. 01, pp. 183–195, 2023.

[22] S. Mador-Haim, R. Alur, and M. M. K. Martin, “Litmus
tests for comparing memory consistency models: How
long do they need to be?” In Proceedings of the 48th
Design Automation Conference, ser. DAC ’11, San
Diego, California: Association for Computing Machin-
ery, 2011, pp. 504–509.

[23] C. Sakalis, C. Leonardsson, S. Kaxiras, and A. Ros,
“Splash-3: A properly synchronized benchmark suite
for contemporary research,” in 2016 IEEE International
Symposium on Performance Analysis of Systems and
Software (ISPASS), 2016, pp. 101–111.

[24] M. Lv, N. Guan, J. Reineke, R. Wilhelm, and W. Yi,
“A Survey on Static Cache Analysis for Real-Time
Systems,” Leibniz Transactions on Embedded Systems,
vol. 3, no. 1, 05:1–05:48, 2016.

[25] R. Wilhelm, J. Engblom, A. Ermedahl, et al., “The
worst-case execution-time problem—overview of meth-
ods and survey of tools,” ACM Trans. Embed. Comput.
Syst., vol. 7, no. 3, May 2008.

[26] H.-K. Tang, P. Ramanathan, and K. Compton, “Com-
bining hard periodic and soft aperiodic real-time task
scheduling on heterogeneous compute resources,” in
2011 International Conference on Parallel Processing,
2011, pp. 753–762.

[27] A. Syed, G. Fohler, and D. G. Pérez, “Online admission
of non-preemptive aperiodic mixed-critical tasks in hi-
erarchic schedules,” in 2017 IEEE 23rd International
Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA), 2017, pp. 1–10.

	Introduction
	Background
	Predictable hardware cache coherence
	Memory consistency model
	Key takeaways

	System Model
	Key Intuition: Memory Consistency Model Violation and Correction with PPP
	PPP: Hardware Approach to Correct Potential Memory Consistency Model Violations with DLRC
	Hardware implementation of DLRC correction
	Hardware implementation to delay violating stores
	Concrete execution

	Worst-case Latency Analysis
	Empirical Evaluation
	Verification of correctness
	Worst-case latency
	Performance
	Discussion

	Conclusion

